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1. Introduction

Supersymmetry has a number of interesting relations to geometry. The analogue of Min-

kowski space is superspace, whose geometry is nontrivial even in the ‘flat’ case [1]. Curved

superspace is the setting for supergravity and has a wealth of interesting geometrical aspects

[1 – 3]. Superembeddings in curved superspace constrain the geometry very stringently and

in many cases even determine the dynamics of the embedded super p-branes [4]. Extended

supersymmetry is covariantly described in various extended superspaces with auxiliary

degrees of freedom [5 – 7]. The target space of supersymmetric nonlinear sigma models,

finally, has to be of a certain type depending on the dimension and on the number of

supersymmetries. It is this latter situation which concerns us in this paper, more precicely

the geometry of twodimensional N = (2, 2) supersymmetric nonlinear sigma models with

an antisymmetric B-field.

In a classic paper [8] it was shown that the target space of such a sigma model has to

be bi-hermitean, i.e. there are two complex structures preserving the metric and they are

covariantly constant with respect to connections whose torsions are ±dB. Recently this

geometry has been reinterpreted in terms of a generalized complex geometry, which arose

in the context of generalized Calabi-Yau manifolds with B-field fluxes [9]. In [10] many

aspects of this geometry are investigated and described. In particular, it is shown that a

subclass called generalized Kähler geometry precicely describes the bi-hermitean geometry.
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A natural question to ask is then how generalized Kähler geometry can be directly

realized in a sigma model. Since generalized complex geometry is defined on the sum of

the tangent and cotangent bundles, TM ⊕T ∗M , and the usual sigma model is defined only

on TM , the first task is to find an appropriate extension of the sigma model to include

fields on T ∗M . This was done in [11] where auxiliary spinorial T ∗M -fields were introduced

in the N = (1, 1) model and the conditions for non-manifest N = (2, 2) supersymme-

try investigated under certain assumptions. This investigation was repeated in [12], for

the case when the metric is absent. Relaxing these assumptions and limiting the study

mainly to extending N = (1, 0) to N = (2, 0), a direct relation to generalized complex

geometry was found in in most cases [13]. However, in that investigation it seemed that

the geometry in the N = (2, 0) case might be even more general, although the study was

incomplete.

To further investigate the geometry, a manifest N = (2, 2) model in terms of left and

right (anti-)chiral superfields [14] was reduced to N = (1, 1) superfields and the general-

ized complex structures identified in [15]. An interesting aspect of this model is that the

reduction automatically provides the auxiliary spinorial N = (1, 1) fields.

In a separate line of investigation [16, 17], it has been shown that generalized complex

geometry bears a close relation to the Batalin-Vilkovisky (BV) treatment of the Poisson

sigma model, or more precisely to the Hitchin sigma model. Namely, the generalized

complex geometry implies that the BV-master equation is satisfied. Also in this case

the implication seems to go only in one direction. Generalized complex geometry has

also appeared in the sigma model context, e.g. in a hamiltonian discussion [18] and for

topological strings [19].

The reason that the investigation of the conditions for N = (2, 0) supersymmetry

(and for N = (2, 2) supersymmetry) was not carried out [13] was mainly the technical

complications of having to find solutions to a large number of algebraic and differential

constraints. In the present paper we show how an appropriate field redefinition can be

used to put the sigma model action in a form where invariance under supersymmetry re-

stricts many of the tensors in the supersymmetry transformations of the fields to vanish.

This allows us to completely determine the target space geometry, at least for the case

of vanishing metric, i.e. with only a B-field present. In doing this we unravel a target

space structure where the natural objects live on TM ⊕ (T ∗M+ ⊕ T ∗M−), i.e. the geom-

etry involves two copies of the cotangent bundle rather than one. Correspondingly all

the fundamental geometric objects such as almost complex structures, metric and con-

nections have a natural formulation in terms of 3d × 3d matrices. In some respects this

structure resembles the bi-hermitean geometry of the second order action (auxiliary fields

removed) more than the generalized Kähler geometry. In particular, the Courant inte-

grability condition of the generalized complex geometry is replaced by covariantly con-

stancy of the matrix-valued almost complex structures. Now, one of the nice features of

generalized complex geometry is that it naturally puts the so-called b-transform on the

same footing as the diffeomorphisms since they are both automorphisms of the Courant-

bracket. It is thus gratifying that we find that the b-transform can be extended to act on

our matrix-objects, and that this extended b-transform is indeed a gauge transformation
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of our basic bundle which preserves the covariantly constancy condition. Finally, under

certain conditions the 3d × 3d matrices collapse to 2d × 2d matrices recovering general-

ized complex geometry. In other words, the latter is contained in the structure we have

found.

The paper is organized as follows: After a short recapitulation of the basic facts about

N = (2, 2) supersymmetric sigma models in section 2, we turn towards a toy model which

we extend to a first order formalism in section 3. For this model, we give a huge family

of solutions for the additional supersymmetry that all close off-shell. Section 4 is devoted

to the development of a proper language that collects the results in a way similar to the

notion of generalized complex geometry. Based on these results, we discuss in section 5

how to find more general solutions. In section 6, we show how this relates to the geometry

of N = (2, 2) symplectic sigma models in a way that extends the b-transformation. In

section 7 we speculate about the role of manifest N = (2, 2) supersymmetry before ending

with a short discussion and open questions in section 8.

2. N = (2, 2) sigma models, preliminaries

The action for a N = (1, 1) supersymmetric non-linear sigma model under the presence of

a background metric Gµν and an antisymmetric field Bµν

S =

∫

d2ξd2θD+φµEµν(φ)D−φν (2.1)

possesses N = (2, 2) supersymmetry [8] provided that the target space geometry is bi-

hermitian. Here, D± are the spinorial derivatives, D2
± = i∂

++
=

, and Eµν = Gµν + Bµν . The

additional, non-manifest supersymmetry is given by

δφµ = ε+J (+)µ
ν D+φν + ε−J (−)µ

ν D−φν (2.2)

where J (±) are complex structures. The metric is hermitian with respect to both of them

and the complex structures are covariantly constant, i.e.

J (±)2 = −
�

N(J (±)) = 0

Gµν = J (±)κ
µ GκλJ (±)λ

ν ∇(±)
ρ J (±)µ

ν = 0.
(2.3)

Here, N(J (±)) is the Nijenhuis torsion for J (±),

N(J (±))µαβ = J (±)µ
ρ J

(±)ρ
[βα] − J

(±)ρ
[α J

(±)µ
β]ρ . (2.4)

The covariant derivatives ∇(±) are given by the connections

Γ
(±)α
βγ = Γα

βγ ± Tα
βγ (2.5)

where Γα
βγ is the metric connection and Tα

βγ = 1
2HβγκGκα is the torsion. This implies that

H = dB is related to the complex structures in a certain way.
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The above conditions ensure that the additional supersymmetry commutes with the

first manifest supersymmetry and that its algebra closes on-shell. Off-shell closure is

achieved provided that the two complex structures commute,

[J (+), J (−)] = 0. (2.6)

This and (2.3) imply that the Magri-Morosi concomitant [20, 21]

M(J (+), J (−))µαβ = J (+)µ
αρ J

(−)ρ
β − J

(−)µ
βρ J (+)ρ

α + J (+)µ
ρ J

(−)ρ
αβ − J (−)µ

ρ J
(+)ρ
βα (2.7)

vanishes and that both complex structures and the product structure π = J (+)J (−) are

integrable and simultaneously diagonalizable.

While in the previous discussion the metric Gµν played a crucial role, we now repeat the

analysis in the case of an antisymmetric background field Bµν only, i.e. we set Eµν ≡ Bµν

in the action (2.1) and obtain

SB =

∫

d2ξd2θD+φµBµν(φ)D−φν . (2.8)

Requiring off-shell supersymmetry, we learn that the set of constraints on the transforma-

tions (2.2) reduces to

J (±)2 = −1 N(J (±)) = 0 H = 0

[J (+), J (−)] = 0 M(J (+), J (−)) = 0.
(2.9)

Thus, the target-space geometry is bicomplex. The condition H = 0 implies that the

model is topological. This is a perfect toy model for our purpose, as we see it as a

first step towards understanding more general sigma models with extended supersymme-

try.

3. Auxiliary fields and supersymmetry algebra

First order sigma model actions have recently come into the focus of research due to their

relation to generalized complex geometry on the target manifold. While it is straightfor-

ward but lengthy to work out the on-shell supersymmetry transformations [11], off-shell

supersymmetry is still not really understood in geometrical terms, partly due to the lack

of notation. Several attempts were made to identify those models that admit or require

generalized complex geometry [12, 13, 16 – 18, 22, 23]. Here, we follow a different approach

to investigate the question of off-shell supersymmetry. We focus on the action (2.8) and

introduce spinorial auxiliary fields S± on T ∗M . They are combined into an auxiliary term

added to the action

S =

∫

d2ξd2θ
[

S+µΠµνS−ν + D+φµBµνD−φν
]

. (3.1)

To keep things simple, we assume that Π is a Poisson tensor of full rank, i.e. it is symplectic

and hence satisfies the Jacobi identity Π[αβ
ρΠ

ρ|γ] = 0.
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By dimensional arguments, see e.g. [11], the most general form of the second super-

symmetry is given by

δ(±)φµ =ε±
(

D±φνJ (±)µ
ν − S±νP

(±)µν
)

δ(±)S±µ =ε±
(

D2
±φνL(±)

µν − D±S±νK
(±)ν
µ + S±νS±σN (±)νσ

µ

+D±φνD±φρM (±)
µνρ + D±φνS±σQ(±)σ

µν

)

δ(±)S∓µ =ε±
(

D±S∓νR
(±)ν
µ + D∓S±νZ

(±)ν
µ + D±D∓φνT (±)

µν

+S±ρD∓φνU (±)ρ
µν + D±φνS∓ρV

(±)ρ
µν

+D±φνD∓φρX(±)
µνρ + S±νS∓ρY

(±)νρ
µ

)

.

(3.2)

The action (3.1) is invariant under these transformations provided that

ΠµαRβ
α = −Kµ

ν Πνβ Π(α|ρZβ)
ρ = 0 Lαβ = 0 Tαβ = 0 (3.3)

and that a set of differential equations hold. One of these is H = 0. For the time being, we

make the assumption that P (+) and P (−) are invertible. It turns out that things simplify

drastically under this assumption. Indeed, already the commutators of the second super-

symmetry with itself provide 113 conditions to be satisfied. We comment on the situation

for more general P (±) in section 5. Off-shell closure of the additional supersymmetry alge-

bra is guaranteed if J (±) are commuting complex structures that are covariantly constant

with respect to certain torsionfree connections Γ
(J(±))µ
νρ

J (±)2 = −1 [J (+), J (−)] = 0 ∇(J(±))J (±) = 0 . (3.4)

The transformations (3.2) are determined by the composite tensors:

K(±)β
α = −P (±)

αµ J (±)µ
ν P (±)νβ

R(±)β
α = −ΠαµK(±)µ

ν Πνβ

L
(±)
αβ = 0

T
(±)
αβ = 0

Z
(±)α
β = −P

(∓)
βκ P (±)κλR

(∓)α
λ + P

(∓)
βκ J

(∓)κ
λ P (±)λα

(3.5)

M (±)
µνρ = 0

X(±)
µνρ = 0

Q(±)ρ
µν = Γ

(K(±))ρ
βµ J (±)β

ν + Γ(K(±))ρ
νκ K(±)κ

µ

V (±)β
µγ = Γ(R(±))β

ρµ J (±)ρ
γ − Γ(R(±))β

γρ R(±)ρ
µ

U
(±)α
βγ = Γ(K(±))α

γκ Z
(±)κ
β

N (±)[αβ]
γ = Γ(K(±))[α

κγ P (±)κ|β]

Y (±)αβ
γ = −Γ(R(±))β

ργ P (±)ρα,

(3.6)
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where

Γ
(K(±))σ
ρλ =

[

P
(±)
λµρ − P

(±)
λν Γ(J(±))ν

ρµ

]

P (±)µ,σ

Γ
(R(±))σ
ρλ =

[

Πλµ,ρ − ΠλνΓ
(K(±))ν
ρµ

]

Πµσ.
(3.7)

The second rank tensors are ‘covariantly constant’ according to

∇ρJ
(±)α
β ≡ J

(±)α
β,ρ − Γ

(J(±))ν
ρβ J (±)α

ν + Γ(J(±))α
ρν J

(±)ν
β = 0

∇ρK
(±)α
β ≡ K

(±)α
β,ρ − Γ

(K(±))ν
ρβ K(±)α

ν + Γ(K(±))α
ρν K

(±)ν
β = 0

∇ρR
(±)α
β ≡ R

(±)α
β,ρ − Γ

(R(±))ν
ρβ R(±)α

ν + Γ(R(±))α
ρν R

(±)ν
β = 0

∇ρP
(±)αβ ≡ P (±)αβ

,ρ + P (±)ανΓ(K(±))β
ρν + Γ(J(±))α

ρν P (±)νβ = 0

∇ρZ
(±)α
β ≡ Z

(±)α
β,ρ − Γ

(R(±))ν
ρβ Z(±)α

ν + Γ(K(±))α
ρν Z

(±)ν
β = 0.

(3.8)

The connections are related as

Γ(J(−)) = Γ(J(+)) Γ(R(±)) = Γ(K(∓)). (3.9)

The corresponding Riemann tensors R(·)κ
λµν = Γ

(·)κ
[ν|λ,|µ] + Γ

(·)ρ
[ν|λΓ

(·)κ
µ]ρ vanish:

R(R(±)) = R(K(±)) = R(J(±)) = 0. (3.10)

From the non-derivative parts of the algebra, one constraint remains:

R(±)ρ
µ Z(±)α

ρ + Z(±)ρ
µ K(±)α

ρ = 0. (3.11)

We observe that, except for being covariantly constant, there is no constraint on P (±).

Equations (3.5) imply

Z
(±)α
β = P

(∓)
βκ [J (∓), P (−)Π−1P (+)t]κα. (3.12)

The relation (3.12) shows that it is possible, at least in certain situations, to choose P (±) in

such a way that both Z(±) vanish. This requires both complex structures to commute with

ωαβ ≡ (P (−)Π−1P (+)t)αβ = −(P (+)Π−1P (−)t)βα. In other words, ω has to be antihermitian

with respect to both complex structures. If, on the other hand, ω is antisymmetric and in

additions satisfies the Jacobi identity we may identify its inverse with the two-form of a

symplectic manifold. Clearly, G(±) = J (±)ω are then candidates for effective metrics. One

such example is the case P (−)αβ = P (+)αβ. It follows that R(±) = −K(±), [K(+),K(−)] = 0

and Π is antihermitian with respect to K(±). However, this alternative is only possible if

Π is covariantly constant,

∇(K)
ρ Παβ = Παβ

,ρ + Γ(K)[α
ρκ Πκ|β] = 0, (3.13)

where Γ(K) ≡ Γ(K(+)) = Γ(K(−)).

This covers the discussion of the second supersymmetry transformations under the

assumptions (3.4) for the particular model we study. Equation (3.9) is sufficient for off-

shell closure. It might not be necessary though we find this quite unlikely due to the way

(3.9) contributes to the solution.
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4. Almost complex structures on TM ⊕ (T ∗M+ ⊕ T ∗M−)

In the previous section we found that the complete data identifying the solution is encoded

in the objects B, Π, J (±), P (±) and Γ(J). We want a formulation as closely related as

possible to generalized complex geometry [9, 10] and shall try to find a role for the compo-

nents of (3.2) in that context. We start with a recapitulation of the notion of generalized

complex geometry.

An almost complex structure is a linear map J : TM → TM that squares to −1. If

we define projection operators π± = 1
2(1 ± iJ), then J is integrable if

π∓[π±X,π±Y ] = 0 (4.1)

for any X,Y ∈ TM , where [·, ·] is the Lie bracket on TM . Hitchin [9] proposed and

later Gualtieri [10] investigated a generalization of this notion, where TM is replaced by

TM⊕T ∗M and the Lie bracket is replaced by the so-called Courant bracket. A generalized

complex structure is defined as a map J : TM ⊕ T ∗M → TM ⊕ T ∗M , such that J 2 = −1

and it leaves the natural symmetric inner product

〈X + ξ, Y + η〉 = 1
2(iXη + iY ξ) X + ξ, Y + η ∈ TM ⊕ T ∗M (4.2)

invariant. In a coordinate basis (∂µ,dxµ), the metric

I =

(

0 1

1 0

)

(4.3)

is hermitian with respect to J . Furthermore, the +i eigenbundle of J is closed under the

Courant bracket [24],

[X + ξ, Y + η]C = [X,Y ] + LXη − LY ξ − 1
2d(iXη − iY ξ). (4.4)

This bracket allows to define Courant integrability as a straightforward generalization of

(4.1). In a coordinate basis, generalized complex structures can be written in terms of

2d × 2d matrices

J =

(

J P

L K

)

. (4.5)

An important feature of the Courant bracket is the existence of non-trivial automorphisms

defined by closed two-forms b ∈ Ω2
closed(M). Consequently, given a generalized complex

structure J , we can define a new such structure by the b-transformation

Jb = UJU−1 U =

(

1 0

−b 1

)

. (4.6)

The automorphism of the Courant bracket guarantees this structure to be integrable. For

a detailed discussion, we refer to the original works [9, 10].

In [13], the authors constructed examples of sigma models admitting generalized com-

plex geometry in the target space. Mainly as a curiosity, they found that the algebraic

conditions for closure of the algebra could be combined into a single 3d×3d matrix squaring

– 7 –
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to −1. This object seems like a natural extension of the concept of generalized complex

structures. Here, we elaborate this idea in detail and use it as a basis for the description

of the target space geometry. We thus combine the tensors into two 3d × 3d matrices

J
(+) =







J (+) −P (+) 0

−L(+) K(+) 0

T (+) −Z(+) R(+)






J

(−) =







J (−) 0 −P (−)

T (−) R(−) −Z(−)

−L(−) 0 K(−)






. (4.7)

The components of these matrices are the linear maps

J (+) : TM → TM P (+) : T ∗M+ → TM

L(+) : TM → T ∗M+ K(+) : T ∗M+ → T ∗M+

T (+) : TM → T ∗M− Z(+) : T ∗M+ → T ∗M− R(+) : T ∗M− → T ∗M−.

(4.8)

The components of J (−) are defined analogously. Here, T ∗M+ and T ∗M− are two copies

of the cotangent bundle. They are associated with the two Grassmann directions on the

worldsheet. Thus, J (±) map the bundle E = TM⊕(T ∗M+⊕T ∗M−) onto itself. Guided by

the action (3.1) we introduce a (degenerate) symmetric inner product on E, an equivalent

to the metric for the ordinary sigma model:

G = G
t =

1

2







0 0 0

0 0 Π

0 Πt 0






. (4.9)

We note that G is degenerate because we set E(µν) = 0 in (2.8) and that G is antisymmetric

in the fermionic components. The algebraic conditions arising from the invariance of the

action, eqns. (3.3), and the non-differential part of the algebra (3.5) can be written in a

compact way:

J
(±)t

GJ
(±) = G J

(±)2 = −1 [J (+),J (−)] = 0. (4.10)

This allows us to regard J (±) as (almost) complex structures on E. Eqns. (3.8) tell us that

these structures are covariantly constant,

∇
(±)

J
(±) ≡ ∂J

(±) − J
(±) · Γ(±) + Γ(±) · J (±) = 0 (4.11)

with respect to certain connection matrices

Γ(+) = diag
(

Γ(J(+)),−Γ(K(+)),−Γ(R(+))
)

Γ(−) = diag
(

Γ(J(−)),−Γ(R(−)),−Γ(K(−))
) (4.12)

and a partial derivative ∂ = 1∂. Equation (3.9) translates into

Γ ≡ Γ(+) = Γ(−). (4.13)
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The components of Γ are torsionfree, Γt = Γ, where the transposition is acting on the two

lower indices, and its Riemann tensor is

R = [∇,∇] = dΓ − Γ ◦ Γ (4.14)

where d = 1d is the generalized exterior derivative. According to (3.10), this matrix

vanishes:

R = 0. (4.15)

In Kähler geometry, the Nijenhuis torsion and the Levi-Civita connection are related by

N(J)(X,Y ) = (∇JXJ)Y − (∇JY J)X + (∇XJ)JY − (∇Y J)JX, (4.16)

with X,Y ∈ TM . Clearly, if J is covariantly constant with respect to the Levi-Civita con-

nection, then N(J) = 0. The generalization to a matrix-valued Nijenhuis torsion N(J (±))

would make use of ∇ and Γ and hence vanishes if ∇J (±) = 0. Thus, (4.11) is an integra-

bility condition ensuring the integrability of J (±), K(±) and R(±).

We find that the above description completely covers closure of the supersymmetry

algebra and most of the conditions that arise from the invariance of the action. In fact,

the only condition left is H = 0. We define an antisymmetric tensor by

B =
1

2







2B 0 0

0 0 Π

0 −Πt 0






(4.17)

and define its field strength in the usual way,

H = dB =
1

2







2HB 0 0

0 0 ΠHΠΠ

0 ΠHΠΠ 0






. (4.18)

Here, HΠ = d(Π−1) which vanishes in our case, since Π is symplectic. With this, we have

H = 0. (4.19)

There are four different possibilities for choosing the two almost complex structure

matrices describing one and the same situation. They are obtained from (4.7) by acting

on J (±) with C(±) = diag(1,∓1,±1) and S = C(+)C(−):

J
(±)
1 = J

(±)
J

(±)
2 = C

(+)
J

(±)
1 C

(+)

J
(±)
3 = SJ

(±)
1 S J

(±)
4 = C

(−)
J

(±)
1 C

(−).
(4.20)

The covariant derivative is changed accordingly, e.g.

∂2 = C
(+)

∂ Γ2 = C
(+)Γ. (4.21)

This symmetry is reminicent of the discrete symmetries of the first order sigma model

action discussed in, e.g. [11]. The whole discussion may equally well be formulated in

terms of any of these choices.
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This completes the discussion of the model (3.1) in this language. However, it is worth

noticing that the geometry of the ordinary second order sigma model (2.1) is embedded in

this framework in a natural way. It corresponds to

G = diag(G, 0, 0) B = diag(B, 0, 0). (4.22)

Of course, then Γ(+) and Γ(−) are no longer related in the same way, since B generates

torsion in the tangent space directions.

5. Towards a more general solution

One of the main ingredients of the solution given in section 3 is the invertibility of P (±).

This assumption was made because the conditions for the supersymmetry algebra to close

simplified drastically. This helped us to introduce the compact notation in the previous

section. However, the spacetime geometry turned out to be completely empty, since there

is neither a metric nor a three-form field strength. Here, we elaborate the case where

P (±) may have degeneracies. This implies that the tangent bundle complex structures

J (±) are no longer related to the cotangent bundle ones K(±), R(±) in a unique way. The

non-differential conditions for invariance of the action and closure of the algebra are still

ensured by (4.10)

J
(±)2 = −1 [J (+),J (−)] = 0 J

(±)t
GJ

(±) = G. (5.1)

We observe that the higher order tensors of the solution (3.6) do not depend on Γ(J(±)) but

rather on the connections for K(±) and R(±). This allows us to go beyond flat space in the

following way: To stick as close as possible to the solution given in the previous sections,

we start with the assumption that there are two connections Γ(R(±)) such that R(±) are

two covariantly constant complex structures. With this, the solution on the two copies of

the cotangent bundle T ∗M+ ⊕ T ∗M− remains the same as before, since

Γ(K)ε
ρµ = −Πεν

[

Γ(R)σ
ρν Πσµ + Πνµ,ρ

]

. (5.2)

and since closure of the algebra requires R(R(±)) = R(K(±)) = 0. In order for the higher

order tensors to remain defined as in (3.6), we need the further assumption that there exists

A
(±)α
ρν such that

P (±)αβ
,ρ + P (±)ανΓ(K(±))β

ρν = A(±)α
ρν P (±)νβ. (5.3)

Together with the equation

∇(K(±))
σ

[

J (±)µ
ρ P (±)ρα + P (±)µρK(±)α

ρ

]

= 0, (5.4)

we read off the connection for the tangent bundle Γ
(J(±))α

ρν = −Aα
ρν and learn that J (±) only

has to be covariantly constant in the directions where P (±) is invertible. On ker(P ), we

do no longer get any differential conditions and thus, locally, the tangent space geometry

becomes bicomplex. This fits to the original second order sigma model with a B-field
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only where we obtained a bicomplex geometry and no differential conditions for J (±).

Especially for P (±)µν = 0, we recover this situation as expected, since the supersymmetry

transformation for φµ decouples from the auxiliary fields S±µ. Since R(J(±)) now in general

is non-vanishing, we obtain a more involved geometry of the tangent bundle, while the

cotangent bundle does not carry any additional geometric structure.

6. Symplectic sigma model and B-transformation

The N = (2, 2) supersymmetric symplectic sigma model action [11, 25]

SSSM =

∫

d2ξd2θ
[

Ŝ(+µD−)φ
µ + Ŝ+µΠµν Ŝ−ν

]

(6.1)

is obtained from (3.1) by the transformation

S±µ → Ŝ±µ = S±µ − ΠµνD±φν (6.2)

and by identifying Bµν ≡ Πµν . To be a bit more general, however, we consider the action

SSSM+B = SSSM +

∫

d2ξd2θ
[

D+φµ(Bµν − Πµν)D−φν
]

. (6.3)

We notice that if we take Πµν to be a globally defined two-form, this is precisely the

action used to discuss the WZW term in [13] with the metric set to zero. By rewriting

the transformations (3.2) in terms of φ and Ŝ±, we obtain the contributions to the new

tensors, which we denote by a hat to distinguish them from the previous results. We omit

the (±) for a better legibility.

Ĵµ
ν = Jµ

ν − PµρΠρν

P̂µν = Pµν

L̂µν = ΠµρĴ
ρ
ν − Kρ

µΠρν

K̂ν
µ = Kν

µ + ΠµρP
ρν

T̂µν = (Rρ
µ − Zρ

µ)Πρν − ΠµρĴ
ρ
ν

Ẑν
µ = Zν

µ − ΠµρP
ρν

R̂ν
µ = Rν

µ

(6.4)

N̂ [µν]
ρ = N [µν]

ρ

M̂µ[νρ] = ΠµκĴκ
[ρν] + Πµ[ν|,κĴκ

ρ] + Kκ
µΠκ[ν,ρ] − N [κλ]

µ ΠκνΠλρ − Qκ
µ[νΠκ|ρ]

Q̂ρ
µν = Qρ

µν − ΠµκP κρ
ν + N [κρ]

µ Πκν − Πµν,κP κρ

Ûρ
µν = Uρ

µν + ΠµσP σρ
ν + Πµν,σP σρ + Y ρσ

µ Πσν

V̂ ρ
µν = V ρ

µν + Y ρσ
µ Πσν

X̂µνρ = −ΠµσĴσ
νρ − Πµρ,σĴσ

ν + (Rσ
µ − Zσ

µ )Πσν,ρ

+ Uσ
µρΠσν + V σ

µνΠσρ + Y κλ
µ ΠκνΠλρ

Ŷ νρ
µ = Y νρ

µ .

(6.5)
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The transformation of J (±) with components (6.4) can be written in a compact way:

Ĵ
(±) = UJ

(±)
U

−1
U =







1 0 0

−Π−1 1 0

−Π−1 0 1






. (6.6)

This implies that

Ĝ = (U−1)tGU
−1 =

1

2







0 1 −1

1 0 Π

−1 −Π 0







B̂ = (U−1)tBU
−1 =

1

2







2(B − Π−1) −1 −1

1 0 Π

1 Π 0






.

(6.7)

Ĝ is hermitian with respect to Ĵ (±), Ĥ = 0 and U is unitary. If we regard (6.2) as a

gauge transformation, that is, an automorphism of the bundle E, then Γ transforms as a

connection and (4.11) is invariant, ∇̂Ĵ (±) = U∇J (±)U−1 = 0. Equations (6.6) and (6.2)

extend the b-transform (4.6) of generalized complex geometry to our formulation. Hence,

it is suggestive to regard (4.11) as an integrability condition. It is puzzling how to fit in

(6.2) in a proper way. Obviously,

Λ̂ 6= UΛ Λ = (φ, S+, S−)t (6.8)

due to the derivatives on φ. In generalized complex geometry, this problem does not occur,

since the fermionic derivative can be included in the definition of Λ. Here, there are two

of them, D±, which complicates the situation. To inspect this in more detail, we promote

the matrices to operators in the following way:

�
=







1 0 0

−Π−1D+ 1 0

−Π−1D− 0 1





 � =







0 0 0

0 0 Π

0 Πt 0







�
=







←−
D (+B

−→
D−) 0 0

0 0 Π

0 −Πt 0






.

(6.9)

Even if B is antisymmetric, the inner product 〈Λ1,Λ2〉 ≡ Λt
1

�
Λ2 is actually symmetric in

Λ1,Λ2. Accordingly, the almost complex structure matrices become

�(+) =







JD+ −P 0

−LD2
+ KD+ 0

TD+D− −ZD− RD+







� (+) = C
(+) = diag(1,−1, 1).

(6.10)
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We introduce the following object:
� (+) = (

� (+)φ,
� (+)S+,

� (+)S−)t

� (+)φ = 0

� (+)S+ =







←−
D+M

−→
D+

1
2

←−
D+Q 0

1
2Q

−→
D+ N 0

0 0 0







� (+)S− =







←−
D+X

−→
D− 0 1

2

←−
D+V

0 0 1
2

←−
D−U

1
2V

−→
D+

1
2U

−→
D− Y







(6.11)

and
�(−),

� (−),
�(−) defined correspondingly. With this notation the transformation is

given by

Λ̂ =
�

Λ �̂ = (
�−1)t�(

�−1)
�̂

= (
�−1)t

�
(
�−1). (6.12)

The action (3.1) can be written as

S =
1

2

∫

d2ξd2θ Λt�Λ =
1

2

∫

d2ξd2θ Λ̂t�̂Λ̂ (6.13)

where � = � +
�

. The supersymmetry transformations become

δ(±)Λ = ε±
� (±)�(±)Λ + ε±Λt� (±)Λ. (6.14)

Thus, the matrices C(±) arise here as well. Closure of the algebra reduces to the condition

[δ1, δ2]Λ = 2ε+
1 ε+

2 ∂++Λ + 2ε−1 ε−2 ∂=Λ. (6.15)

It is not difficult to check that this operator formulation works also for (ordinary) second

order sigma models and in the context of generalized complex geometry on TM ⊕ T ∗M .

7. Manifest supersymmetry and left-/right-chiral superfields

There are several ways to construct manifest N = (2, 2) sigma models by using constrained

N = (2, 2) superfields. The different possibilities are chiral, twisted chiral and left-/right-

chiral ones together with their antichiral partners [8, 15, 26 – 28]. To understand how the

latter, originally called semichiral fields, fit into our description in terms of N = (1, 1)

manifest supersymmetry, we start with the simple toy model action

S = −

∫

d2ξd2θd2θ̄
[��̄

− ¯
�� ]

=

∫

d2ξd2θd2θ̄
[�

ABAB′
�B′

]

(7.1)

�
,
�

are the left-chiral and right-antichiral superfields [14]:

�̄
+

�
= 0

�
−
�

= 0

D± =
�

± +
�̄

± Q± = i(
�

± −
�̄

±)

ϕ =
�
| Ψ− = Q−

�
|

χ =
�
| Υ+ = Q+

�
|.

(7.2)
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The p left chiral and p′ right antichiral holomorphic coordinate indices a and a′ and their

antiholomorphic partners are conveniently collectively denoted A = a, ā and A′ = a′, ā′.

Moreover, we introduce α = A,A′.

After a redefinition of the fields,

(Ψ−, Ῡ+) → (Ψ̂−, ˆ̄Υ+) = (Ψ−, Ῡ+) − i(D−ϕ,D+χ̄)

(Ψ̄−,Υ+) → ( ˆ̄Ψ−, Υ̂+) = (Ψ̄−,Υ+) + i(D−ϕ̄,D+χ)
(7.3)

and with BA′B ≡ −BBA′ , the action (7.1) becomes

S = −

∫

d2ξd2θ
[

Ψ̂A
−BAB′Υ̂B′

+ + D+ϕABAB′D−χB′

+ D+χA′

BA′BD−ϕB
]

. (7.4)

We find it convenient to collect the fields into

φα = (ϕA, χA′

) Ψα
+ = (Ψ̂A

+, Υ̂A′

+ ) Ψα
− = (Ψ̂A

−, Υ̂A′

− ) (7.5)

and introduce

Bαβ =

(

0 BAB′

BA′B 0

)

. (7.6)

We let S+α = Ψκ
+Bκα and S−α = BακΨκ

− and denote the inverse of Bαβ by Παβ . We may

then rewrite (7.1) as

S = −

∫

d2ξd2θ
[

S+αΠαβS−β + D+φαBαβD−φβ
]

(7.7)

where Π and B are constant antisymmetric tensors by definition. This implies that the

second term vanishes, however, we keep it for clarity. Even though Π = B−1, we distinguish

them to keep as close as possible to the discussion in the previous sections. The fields S±

are constrained by

S−A = S+A′ = 0 Υ̂A′

− = Ψ̂A
+ = 0. (7.8)

The 2p + 2p′ constraints on the N = (2, 2) fields (7.2) translate into restrictions on the

auxiliary fields S±. Effectively, half of them have been integrated out by means of their

field equations (7.8). This is the direct translation of the constraints (7.2) on the N = (2, 2)

fields. We may formally introduce

Ψ+ = Q+

�
| Υ− = Q−

�
| Ψ̄+ = Q+

¯
�
| Ῡ− = Q−

�̄
|. (7.9)

The constraints (7.2) transform into

Ψ+ = iD+ϕ Υ− = −iD−χ Ψ̄+ = −iD+ϕ̄ Ῡ− = iD−χ̄. (7.10)

If we define the transformation (7.3) on these fields by

(Ψ+, Ῡ−) → (Ψ̂+, ˆ̄Υ−) = (Ψ+, Ῡ−) − i(D+ϕ,D−χ̄)

(Ψ̄+,Υ−) → ( ˆ̄Ψ+, Υ̂−) = (Ψ̄+,Υ−) + i(D+ϕ̄,D−χ)
(7.11)
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we find that (7.8) and (7.10) match each other. Thus, using the field equations for half

of the auxiliary N = (1, 1) fields is equivalent to constraining the N = (2, 2) superfields.

By a simple rotation we see that we cover all cases which allow for Darboux-Nijenhuis

coordinates, even for non-constant B.

By integrating out some of the fields, the almost complex structure matrices effectively

collapse to generalized complex structures:

J
(+) =







J (+) −P (+) 0

0 K(+) 0

0 −Z(+) R(+)






−→ J (+) =

(

Ĵ (+) −P̂ (+)

0 K̂(+)

)

. (7.12)

In terms of A,A′ coordinates, this reads

J (+) =











J (+) 0 0 0

0 J (+)′ −P (+) 0

0 0 K(+) 0

0 0 −Z(+) R(+)′











(7.13)

where we identified the tensors with their remaining components, e.g. Kα
β → KA

B . There is

a similar reduction for J (−) → J (−). Comparing to the results of [15], we find their solution

to match ours, (7.13) if Z(±) = 0. We find P (±) = −P (∓)t. It follows J (+) = −J (−) and

R(±) = −K(±). Z(±) = 0 implies [J (±), ω] = 0, with ω as defined in section 3 where we

identified this case with a symplectic manifold.

In the non-manifest description, we found a whole set of solutions given in terms of

almost complex structure matrices to choose among. In the left-/right-chiral description,

we start with ‘diagonal’ objects, i.e. Darboux-Nijenhuis coordinates. We learn that the

different alternatives should collapse into one and the same in (reduced) Darboux-Nijenhuis

coordinates. This implies that we can choose Z(±) = 0 in these cases.

If we integrate out the remaining spinorial fields we reduce the geometry to the ordinary

case of two (ordinary, commuting) complex structures J (±) acting on TM . We obtain the

following diagram:

J
(±) S+A′ ,S−A=0

−−−−−−−−→ J (±) S+A,S−A′=0
−−−−−−−−→ J (±)

We find the line of argumentation valid even when replacing BAB′ by a non-constant

E = G + B in (7.1), following the lines of [15]. This strongly suggests that this is the

general way to understand and embed left-/right-(anti-)chiral N = (2, 2) theories in this

context.

8. Discussion

We presented a new framework that might lead to new insights on the way towards a

complete understanding of the geometry underlying N = (2, 2) supersymmetric non-linear

sigma models. As examples we considered the symplectic sigma model and showed how the

manifest theories in terms of left-/right-chiral superfields can be interpreted and embedded

into our new framework.
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It is an open question, how to treat arbitrary first order sigma models in this context.

Most intriguing is the question what the proper integrability conditions are, mainly due

to the lack of a proper language. One might expect integrability to work in a similar way

as Courant integrability generalizes ordinary integrability. For the particular models we

studied, we found a description that is given by a covariantly constancy condition of the

almost complex structure matrices. We argued that this gives the integrability condition

for these models. The solution is based on the invertibility of one of the complex structure

tensors. We elaborated on possible generalizations of our solution and compared them

to the corresponding second order sigma model. The most general target space geometry

allowing for the extension of a general N = (1, 1) sigma model to N = (2, 2) supersymmetry

is still to be discovered, although we believe that that framework presented here contributes

an important step in that direction.
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